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To understand RNA, it is necessary to move beyond a

descriptive categorization towards quantitative predictions of

its molecular conformations and functional behavior. An

incisive approach to understanding the function and folding of

biological RNA systems involves characterizing small, simple

components that are largely responsible for the behavior of

complex systems including helix–junction–helix elements and

tertiary motifs. State-of-the-art methods have permitted

unprecedented insight into the conformational ensembles of

these elements revealing, for example, that conformations of

helix–junction–helix elements are confined to a small region of

the ensemble, that this region is highly dependent on the

junction’s topology, and that the correct alignment of tertiary

motifs may be a rare conformation on the overall folding

landscape. Further characterization of RNA components and

continued development of experimental and computational

methods with the goal of quantitatively predicting RNA folding

and functional behavior will be critical to understanding

biological RNA systems.
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Science, almost by definition, is a search for order in

Nature — simplifications, minimal descriptions, and

categorizations of the world and universe around us.

These descriptions are valuable when they summarize

a considerable amount of information and when they
www.sciencedirect.com 
attain the stature of a true model — that is, one with

the power to predict hitherto unseen phenomena. Our

early molecular understanding of Nature in terms of the

Central Dogma (Figure 1a) was thus highly satisfying [1].

It placed molecules into one of three classes based on

type: DNA to store genetic information, RNA to carry the

genetic information from DNA to proteins, and proteins

to perform the functions encoded in the genetic informa-

tion. This model thus predicted where the functions of

newly discovered molecules would lie.

Nevertheless, while the Central Dogma was and is of

great value, over time it was recognized to not have full

predictive value — for example, RNA is copied into

DNA by reverse transcriptase; tRNA acts as a structured,

functional adaptor to read the genetic code; RNA mole-

cules carry out catalytic functions in chromosome main-

tenance, pre-mRNA splicing, protein targeting to

membranes, and self-processing; and proteins form heri-

table structures (Figure 1b) [2–7]. Nature, driven by

natural selection and oblivious to our classifications, used

all of its molecular constituents to solve problems and to

evolve new solutions that provide a selective advantage.

Consider why the discovery of catalytic RNA was greeted

with widespread disbelief and enormous skepticism. Con-

ventional wisdom held that ‘enzymes are (were) proteins.’

But while it is true that there are only four RNA bases in

contrast to 20 amino acids, no RNA pKa values near neu-

trality, and barriers to RNA packing due to backbone

electrostatic repulsion and degrees of freedom, these prop-

erties do not mean that RNA cannot do catalysis. Here, again,

we were limited by categorization: RNA is or is not a catalyst.

However, if we resist our desire for neat and absolute

categories, we can ask (or could have asked): ‘How good

can RNA be as a catalyst?’ And we can use (or could have

used) our molecular and atomic understanding to assess this

question in a manner unbiased by our prior categorizations.

Indeed, before the discovery of catalytic RNA, several

researchers had suggested that the ability of RNA to form

complex shapes could lead to it acting as a catalyst [8–10].

The discovery of catalytic RNA is less surprising when one

considers the problem in terms of molecules instead of

categories and realizes that other types of biomolecules can

be catalysts. For example, lipids, forming micelles, can

enhance reactions between hydrophobic groups within the
Current Opinion in Structural Biology 2015, 30:125–133
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From categories to molecules. (a) The Central Dogma of biology defined three categories and a unidirectional information flow (arrows) in which

DNA stores the information, and RNA carries the information to proteins that then carry out all biological functions. (b) Updated view of the Central

Dogma, in which information flow is not unidirectional and roles are not balkanized. In particular, RNA performs biological functions alone or in

collaboration with proteins including translation, splicing, gene regulation, and chromosome maintenance. (c) Mechanism of protein targeting to

the endoplasmic reticulum (ER) or plasma membrane by the signal recognition particle (SRP), which contains an RNA component (red) that serves

as a scaffold for the SRP and as a means for molecular reorganization during the functional cycle [12]. SRP binds an N-terminal signal sequence

(orange) in the nascent peptide and arrests elongation. The SRP–ribosome-nascent chain complex (SRP–RNC) then associates with the SRP-

receptor (SR) in the membrane, followed by transfer of the RNC to the translocon and SRP dissociation. At the translocon, translation resumes,

and the nascent peptide is translocated into the ER lumen or a membrane bilayer.
micelle, between hydrophobic groups incorporated into

micelles, and between charged groups attracted to an

oppositely charged micelle surface [11]. By applying the

guiding principle of natural selection and the properties of

molecules, we can better understand biology and go be-

yond the limitations stemming from our desire to catego-

rize. Here, we apply this perspective to RNA folding and

function.

In the past decade, there has been an explosion of

information about and understanding of RNA-mediated
Current Opinion in Structural Biology 2015, 30:125–133 
processes. The ribosome and the signal recognition par-

ticle (SRP) are two well-characterized systems that in-

volve functional RNAs [12,13]. Figure 1c outlines the

functional cycle of the SRP in which the RNA of the SRP

plays a role in global rearrangement of the complex. This

role suggests that dynamics, or conformational transitions,

are required for this and other RNA-mediated processes.

So how do we move beyond describing such processes to

understanding them, with understanding ultimately de-

fined by the ability to quantitatively predict the structur-

al, conformational, and functional behavior of RNA
www.sciencedirect.com
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systems? Such ability would be the bedrock for a true

understanding, at the molecular level, of how biology

works and the foundation for an ability to predict the

effects of mutations, interventions and an ability to engi-

neer new behaviors for applications in health and tech-

nology.

There have been several efforts to model the ribosome

and its function using computational approaches [14,15].

While these represent extraordinary achievements, the

size and complexity of the ribosome render it difficult to

assess and develop these computational models via a

series of quantitative predictions and subsequent experi-

mental tests. A distinct approach, founded on the appar-

ent greater modularity of RNA components (relative to

the high interconnectivity of the structural components of

proteins), is to begin with smaller RNA components that

can be characterized at the atomic level and ultimately to

assemble the behavior of these components to make

atomic-level predictions about larger RNA systems. From

such a thorough understanding, cellular factors and fea-

tures that perturb the fundamental dynamics and ther-

modynamics of RNAs and RNA/protein complexes can

be identified and their contributions dissected and un-

derstood.

Given that there is already a well-developed and reason-

ably predictive understanding of RNA secondary structure

via nearest-neighbor, or ‘Turner,’ rules [16–18], we focus

here on helix–junction–helices (HJHs) and tertiary motifs

as ubiquitous components of RNA structure and empha-

size the need to address the ensemble nature of both of

these elements to understand RNA behavior and function.

RNA helix–junction–helix (HJH) elements
Folding to a functional state requires an enormous loss in

conformational entropy, and much of this entropy loss is

accomplished for RNA by the formation of stable sec-

ondary structure elements. Once secondary structure is

formed, helices are rigid, to a first approximation, and the

primary source of conformational entropy lies in the

junctions that connect the helices. Thus, we need to

understand the behavior of these junctions to understand

(and predict) RNA folding and to assess and understand

their roles in functional conformational transitions.

Pioneering work on RNA junctions by Lilley, following his

classic studies of the DNA Holliday junction, indicated

that RNA junctions prefer particular geometries that then

favor specific folded structures [19–21]. There are now

several examples of junctions known to favor particular

bent conformations [22–23]. However, the ensemble na-

ture of HJHs, which is a manifestation of the free energy

landscape, has only recently been investigated. As alluded

to above, the longer term aim is to stitch together energy

landscapes from the components of functional RNAs (and

RNA–protein complexes) to quantitatively predict and
www.sciencedirect.com 
understand the kinetic and thermodynamic properties of

complex systems.

Chu et al. approached the problem of predicting HJH

ensembles conceptually, showing that different types of

connecting junctions lead to different energy landscapes

for the attached helices (Figure 2a,b) [24�]. In particular,

they modeled a single-stranded junction connection and

a double-stranded junction connection by molecular

dynamics using short PEG tethers for the junctions to

ensure accurate modeling. The helices were represented

by cylinders to isolate the features of the resulting helix–
helix energy landscape that are determined by the to-

pology of the connections between the helices. Differ-

ences in the resulting landscapes (Figure 2a,b) — that is,

the spatial positions of the helices emanating from the

junctions — demonstrated the importance of the topol-

ogy of the physical connection, which was further

highlighted by considering the probabilities of forming

tertiary structures.

As described below, RNA tertiary structure is often

enforced by motifs embedded in helices. Using simplified

models for motifs to avoid other complicating factors and

unknowns, Chu et al. placed tertiary motif partners at

specific locations on the PEG-tethered helices and pre-

dicted large differences in folding free energies

(Figure 2c). Since this work predicts that the junction

region determines the orientation of individual helices

even with simplified PEG junctions, resolving the struc-

tural ensembles of real HJH motifs is critical for predict-

ing the folding behavior of complex RNA structures.

The next obvious question is what does the ensemble look

like for a real RNA HJH? Al-Hashimi and colleagues

addressed this question through extensive studies of the

biologically important TAR HJH element (Figure 3a).

They used NMR residual dipolar coupling (RDC) mea-

surements that have the advantage — for this applica-

tion — of providing dynamic information without

discriminating between motional timescales over the range

of picoseconds to milliseconds [25�]. Thus, information

about the ensemble of TAR structures can be obtained

rather than simply an averaged structure or information

about the dynamics experienced over a narrow time win-

dow determined by the particular experimental method.

The preferred TAR conformations were determined and

shown to represent a rather small region of the sterically

allowed space for the TAR junction. Nevertheless, an

ensemble was required to accurately represent the data

(Figure 3b) [26�]. Binding of ligands to TAR RNA was

shown to favor conformers within a region of the overall

energy landscape for free TAR (Figure 3b) [26�,27,28],

emphasizing the need for ensemble-based molecular

descriptions to understand binding events. The probabil-

ity of forming the subset of ligand-bound conformers in
Current Opinion in Structural Biology 2015, 30:125–133
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Figure 2

(a) (b)

Diamond Circle Triangle

0.2

0

0.4

0.6

0.8

1
dPEG
sPEG

Tertiary Contact Location

F
ra

ct
io

n 
F

ol
de

d

(c)

Current Opinion in Structural Biology

Predictions of the behavior of isolated junctions within RNA. [Reprinted from [24�]] (a) An idealized single-stranded PEG junction construct (left)

and its predicted conformational landscape (right). Green/red sticks (with green distal and red proximal to the junction to aid visualization)

represent the different orientations of one helix relative to the reference helix (gray) in the landscape. (b) An idealized double-stranded PEG

junction construct (left) and its predicted conformational landscape (right) visualized as described in (a). (c) Prediction of the fraction folded for

different positions of a tertiary contact, based on simulations of the allowed conformational space in (a) and (b). The left panel shows the positions

of different pairs of tertiary contacts (diamonds, circles, or triangles) relative to the position of the single-stranded (a) and double-stranded (b) PEG

junctions. The panel on the right shows the predicted folded fraction for different positions of the tertiary contact in the two junction contexts at

1 M monovalent salt. When the tertiary contacts are at the triangle position, the estimated fraction folded is less than 0.01%.
free TAR and the atomic-level properties of the binding

event will determine the probability of following so-

called tertiary capture or induced fit binding mechanisms

[28]. We suggest that a rigorous ensemble view of a

system such as TAR and its ligands, in the form of a free

energy landscape, can ultimately lead to a quantitative

and predictive understanding of the association process,

an outcome that is not accessible from simply labeling

pathways as tertiary capture or induced fit.

An important next question is to what extent does the

specific sequence of the junction matter, and, as

highlighted in the conceptual study of Chu et al., to what

extent does the topology of the junction matter? ‘Matter’

here can be defined as the effect on the ensemble of

helix–helix positions in space emanating from the junc-

tions and the free energy landscape describing the three

Euler angles and three Cartesian coordinates that deter-

mine the positions of the helices with respect to one
Current Opinion in Structural Biology 2015, 30:125–133 
another (i.e., the interhelical distances and orientations)

[29��,30,31��]. A summary of crystal structures of HJHs

collated based on the number of single-stranded nucleo-

tides on each side of the junction suggests that the

preferred helix positions are highly dependent on the

topology of the junction (Figure 3c) [31��].

It remains to be determined how sensitive helix–helix

positions are to particular sequences within junctions of

specified length, for example, whether most sequences

behave the same with rare outliers such as the kink-turn

[23] or if there is a wide range of landscapes that are highly

sequence-idiosyncratic. The degree to which flexibility

within the helices themselves affects the positioning of

distal tertiary motifs and whether the sequences of Wat-

son–Crick base pairs have significant effects also remain to

be determined. Importantly, the helix–helix conformation-

al landscape is highly sensitive to electrostatic screening

[24�,32], which in turn depends on the ionic constituents of
www.sciencedirect.com
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Figure 3
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Conformational ensembles of RNA helix–junction–helix motifs (HJHs). (a) The secondary structure of HIV-1 TAR. Wild-type TAR has a six-

nucleotide hairpin loop that for the majority of studies is replaced with the more stable UUCG tetraloop. (b) The Euler angles of a HJH, including

the twist angle about the two helices (ah, gh) and the interhelical bend angle (bh), describe the interhelical orientation. The Euler angle distribution

of an NMR RDC-selected conformational ensemble of TAR reveals the presence of large amplitude bending and twisting motions. The population

of specific conformations (squares) is indicated by color, with increasing probability from blue to red. Seven ligand-bound conformations of TAR

from crystal structures (black circles) reside within the ligand-free ensemble [Reprinted from [26�] with permission. Copyright 2013 American

Chemical Society]. (c) The interhelical orientations of HJHs demonstrate topological confinement, illustrated by the Euler angle distribution map.

PDB-derived HJHs, defined by the number of single-stranded residues in each strand of the junction (SXSY, with the subscripts denoting the

number of nucleotides present on each side of the bulge; X � Y; left panel). The HJHs exhibit changes in the distribution of interhelical orientations

dependent on the junction topology (colored by Y-family) [from [31��], reprinted with permission from AAAS].
the solution, but popular models do not yet adequately

treat the underlying electrostatics, as discussed elsewhere

[33,34].

How will these major outstanding questions be answered?

NMR RDC approaches have proven powerful for probing

rotational degrees of freedom, and, in principle, comple-

mentary information can be obtained from X-ray scatter-

ing interference (XSI), an approach developed by

Harbury and colleagues that employs two site-specifically

attached Au-nanocrystals and provides an instantaneous

distance-probability distribution via the scattering inter-

ference pattern of these nanocrystals [[35�,36�,37��], Shi
www.sciencedirect.com 
et al., in press]. Given the large number of sequence

combinations in need of exploration, developing infor-

mation-rich, high-throughput biophysical assays is a key

challenge. As highlighted in the next section, techniques

are also needed to reveal rare or ‘hidden’ conformations;

NMR relaxation dispersion methods can detect discrete

rare conformations [38��,39��], but approaches that look

more generally at the ensemble of sparsely sampled

conformations are also needed. Ultimately physics-based

computational approaches have the promise to provide

complete atomic-level descriptions of conformations,

their exchange rates and paths, and their abundances

across the full range of solution ion conditions. Realizing
Current Opinion in Structural Biology 2015, 30:125–133
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this goal will likely require considerable patience and

methodical cycling through models, non-trivial predic-

tions, and explicit quantitative tests [33], and infrastruc-

ture and support for such long-term initiatives will be

required [40��].

RNA tertiary motifs
An apparent simplifying feature of RNA structure, rela-

tive to proteins, is the presence of reoccurring tertiary

motifs [41,42]. Unlike protein three-dimensional struc-

tures with near uniform dense packing, RNA three-di-

mensional structures appear to have only occasional areas

of direct and extended contact. These limited and dis-

tinct tertiary connections lead to the view that dissecting

RNA tertiary folding and conformational transitions into

quantifiable elements may be more tractable than the

parallel goal for proteins where the driving force for

folding is distributed throughout the packed structure.

In this section we address the ensemble properties of RNA

tertiary motifs from the standpoint of the components that

come together to form the tertiary contact (i.e., bound or

folded state). The conformational landscape and intercon-

version of the free states determines the probability of

forming the tertiary motif (kinetics) and directly influences

its stability (thermodynamics) via the number of accessible

states in the unfolded (or partially folded) ensemble.

Tertiary contacts form when one region of a RNA ‘binds’

to another, and this behavior has parallels to ligand and

protein binding by RNA. Early NMR structural studies

from Williamson revealed RNA conformational changes
Figure 4
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accompanying ligand binding, and it was suggested that

this might be a general property of RNA molecules

[43,44]. More recently, it was discovered that Nature

has exploited conformational changes coupled to ligand

binding to control gene expression via riboswitches, pro-

viding another example of Nature’s ability to operate

outside the predictions of the Central Dogma, with

RNA rather than proteins acting as control sensors [45].

RNA folding generally appears to be a slow process

[46,47], and different origins may be at play for different

RNAs or under different conditions. The factors poten-

tially responsible for slow folding include the HJH con-

formational landscape, as introduced above, tertiary

structure motif formation, rearrangements of ion atmo-

sphere ions and ion binding, and the making and breaking

of nonnative secondary and tertiary structures. As noted

above, a full and predictive understanding will require

isolation and dissection of each of these underlying fac-

tors in simpler systems, and here we describe results that

provide insight into a ubiquitous RNA tertiary motif, the

tetraloop/tetraloop receptor (TL/TLR) (Figure 4a).

Comparison of X-ray crystal structures of TL/TLR ter-

tiary motifs with the NMR structures of the free tetraloop

and free tetraloop receptor structures reveals substantial

rearrangement (Figure 4a) [48–50]. However, this struc-

tural knowledge alone does not tell us the pathways and

energetics of motif formation — are there substantial or

miniscule populations of the folded states present in the

unfolded ensembles, are there small or large barriers to

rearrangement between these states, and can an initial
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. (a) The crystal structure of the P4–P6 domain of the Tetrahymena

 an overlay of the free (yellow, PDB: 1TLR [49]) and bound (blue, PDB:

ound (blue, PDB: 1GID [48]) forms of the TL (bottom) (right panel). (b)

 [53]]. (c) Predicted free energy reaction profile for the formation of a

 and intramolecular tertiary contacts [51,52], as described in the text.
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non-native complex form and rearrange to the final state?

We do not yet have answers to these questions, but

literature results can be combined to provide quantitative

estimates of and some rough boundary conditions for the

association process.

Qin et al. studied the formation of a TL/TLR motif from

intermolecular TL and TLR components via changes in

relaxation of an attached EPR tag and determined a

dissociation constant of Kd = 0.4 mM (at 125 mM Mg2+)

[51]. Nesbitt, Pardi, and colleagues used smFRET to

study the formation of a TL/TLR connected intramolec-

ularly via flexible U7, A7, or U14 tethers (Figure 4b; [52]).

Given the flexibility of this tether it is reasonable to

assume that the rate constants for dissociation of inter-

molecular and intramolecular TL/TLRs are the same,

and a value of kundock = 3 s�1 was measured in the

smFRET studies under conditions similar to those used

in the intermolecular experiments (at 0–10 mM Mg2+).

Returning to the intermolecular process, an equilibrium

dissociation constant can be represented in terms of

association and dissociation rate constants: Kd = kdissoc/

kassoc. With the observed Kd and the assumption that

kdissoc = �kundock, then kassoc, the second order rate con-

stant for TL/TLR formation, can be calculated: kassoc = k-

dissoc/Kd = (3 s�1/0.4 � 10�3 M) = 8 � 103 M�1 s�1. While

the rate and equilibrium constants used to estimate the

value of kassoc were not obtained under the same condi-

tions, it is likely that the value above provides a reason-

able order-of-magnitude estimate.

We can compare this kassoc value with the value expected

for diffusional collision — that is, the rate constant

expected if the molecular components are preformed

such that essentially every collision results in a productive

binding event. Diffusion is several orders of magnitude

faster than TL/TLR association (kdiff = �109 M�1 s�1),

indicating that roughly only 1 out of every 105 collisions

leads to TL/TLR formation (Figure 4c). Thus, there is a

substantial barrier for tertiary structure formation subse-

quent to collision.

We can now use the above estimates to help describe

intramolecular tertiary contact formation for the intramo-

lecular construct studied by Nesbitt, Pardi and colleagues

[42,52,53] as a transition from an unfolded (U) to a folded

ensemble (F) via an intermediate collisional ensemble

(C) in which the tertiary elements are roughly aligned

following an intramolecular collision but with one or both

tertiary element in a nonproductive conformation

(Figure 4b,c). Since our earlier calculations estimate that

the TL/TLR is formed once every 105 collisions, the rate

constant for transitioning from C to U (k�1) is approxi-

mately 105 times greater than that for the transition from

C to F (k2 = 10�5k�1) (Figure 4c). As k�1 is much larger

than k2, k�2 represents the rate-limiting step for dissocia-

tion and k�2 ¼ kobsd
undock ¼ 3 s�1. A rate constant k�1 for
www.sciencedirect.com 
escape from C, the reverse of diffusional collision, can be

crudely estimated to be around 1010 s�1. Thus, k�1 is

�1010 s�1 and k2 (=10�5k�1) is �105 s�1. This leaves only

k1 to calculate, and its value can be obtained from

the values for the other three rate constants and the

overall equilibrium constant of Kfold = 19 [52], according

to the equation: Kfold = k1k2/k�1k�2, which gives k1 =

6 � 106 s�1. The equilibrium, crudely estimated, for

the collision complex KC = k1/k�1 (=6 � 106 s�1/

1010 s�1) = �6 � 10�4. Thus, only a very small fraction

of this construct exists at equilibrium in an overall con-

formation aligned to form the TL/TLR tertiary contact,

and only a small fraction of that aligned population has the

TL and TLR configured such that their collision and

interaction productively leads to formation of the stable,

native TL/TLR.

These calculations illustrate an approach to begin to

break down and help describe and understand RNA

folding processes and conformational transitions. Future

challenges include determining how or whether these

barriers change with solution conditions, how electrostat-

ics contribute to the barrier of bringing together RNA

elements, what the association rate constants and proba-

bilities for other RNA tertiary motifs are, and what the

atomic-level reasons for slow binding and rearrangements

that occur prior to, during, and subsequent to binding are.

In addition, it is likely that many of the aligned states that

must form prior to tertiary motif formation (Figure 4c) are

rare and below the threshold of detection in NMR RDC

and XSI studies so that new approaches to find and

quantitate these rarely visited sectors of HJH conforma-

tional landscapes will be needed.

Conclusion
The rapidly growing number of RNA systems and RNA-

based functions creates the temptation to simplify

through categorization. We suggest that, ultimately, a

predictive understanding of RNA systems and other

complex macromolecular assemblages will require under-

standing at the molecular and atomic level. Although the

size and complexity of RNA systems present a formidable

challenge, molecular understanding with predictive ca-

pabilities may be attainable by studying simpler systems,

in parallel to biological and physical studies of complex

RNAs, with the perspective that the energy landscapes of

component parts can be used to predict the energy land-

scapes of larger, more complex RNAs and RNA/protein

assemblies. These simple systems, in particular HJHs and

tertiary motifs, along with recent methodological break-

throughs, allow us to begin to observe and understand the

conformational ensembles of RNA and to progress toward

this ambitious goal.
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